MSA_Week2 1.2 Minus Inverse

Minus Inverse...

1.2.1 Minus Inverse

Definition 1.2.1 (Minus Inverse)

Let AA be an n×pn \times p matrix. If there exists a p×np \times n matrix XX such that

AXA=A, A\,X\,A = A,

then XX is called a minus inverse of AA, denoted by A.A^-.

Property 1.2.1

If AA is nonsingular (invertible), then AA^- is unique and

A=A1. A^- = A^{-1}.

Proof. Since A×A1×A=AA \times A^{-1} \times A = A, A1A^{-1} is a generalized inverse of AA. If XX is another generalized inverse, then A×X×A=AA \times X \times A = A. Multiplying on the left and right by A1A^{-1} yields X=A1X = A^{-1}. Hence uniqueness.

Property 1.2.2

Every matrix AA has at least one minus inverse, but it may not be unique (unless AA is invertible).

Sketch of construction/proof. Suppose rank(A)=r\mathrm {rank}(A) = r. There exist nonsingular matrices P(size n×n)P \quad (\text{size } n \times n) and Q(size p×p)Q \quad (\text{size } p \times p) such that

A=P(Ir000)Q. A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q.

Equivalently:

A=P(Ir000)Q=(P)(Ir0)(Ir0)(Q), A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q = \bigl(P\bigr) \Bigl( I_r \quad 0 \Bigr) \begin{pmatrix} I_r \\ 0 \end{pmatrix} \bigl(Q\bigr),

where PP and QQ are invertible, and the middle block has rank rr.

To construct AA^-, consider:

X=Q1(IrT12T21T22)P1, X = Q^{-1} \begin{pmatrix} I_r & T_{12} \\ T_{21} & T_{22} \end{pmatrix} P^{-1},

where T12,T21,T22T_{12}, T_{21}, T_{22} can be arbitrarily chosen (of compatible dimensions). One checks that AXA=A.A\,X\,A = A. Thus XX is a minus inverse of AA. This shows existence but also shows that in general it is not unique (unless AA is invertible).

Property 1.2.3

For any n×pn \times p matrix AA:

rank(A)    rank(A). \mathrm{rank}(A^-) \;\ge\; \mathrm{rank}(A).

Proof. From the same decomposition

A=P(Ir000)Q, A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q,

we take

A=Q1(IrT12T21T22)P1. A^- = Q^{-1} \begin{pmatrix} I_r & T_{12}\\ T_{21} & T_{22} \end{pmatrix} P^{-1}.

Because

(IrT12T21T22) \begin{pmatrix} I_r & T_{12}\\ T_{21} & T_{22} \end{pmatrix}

has rank at least (r), it follows that

rank(A)    r  =  rank(A). \mathrm{rank}(A^-) \;\ge\; r \;=\; \mathrm{rank}(A).

Property 1.2.4

For any n×pn \times p matrix AA:

rank(A)=rank(AA)=rank(AA)=tr(AA)=tr(AA). \mathrm{rank}(A) = \mathrm{rank}\bigl(A\,A^-\bigr) = \mathrm{rank}\bigl(A^-\,A\bigr) = \mathrm{tr}\bigl(A\,A^-\bigr) = \mathrm{tr}\bigl(A^-\,A\bigr).

Proof. Let rank(A)=r\mathrm{rank}(A) = r. Then

A=P(Ir000)Q,A=Q1(IrT12T21T22)P1. A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q, \quad A^- = Q^{-1} \begin{pmatrix} I_r & T_{12}\\ T_{21} & T_{22} \end{pmatrix} P^{-1}.

Hence

AA=P(Ir000)QQ1(IrT12T21T22)P1=P(IrT1200)P1. A\,A^- = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q \,Q^{-1} \begin{pmatrix} I_r & T_{12}\\ T_{21} & T_{22} \end{pmatrix} P^{-1} = P \begin{pmatrix} I_r & T_{12}\\ 0 & 0 \end{pmatrix} P^{-1}.

It follows that

rank(AA)=r. \mathrm{rank}(A\,A^-) = r.

Also,

(AA)2=AAAA=AA, (A\,A^-)^2 = A\,A^-\,A\,A^- = A\,A^-,

which implies AAA\,A^- is idempotent; hence

rank(AA)=tr(AA)=r. \mathrm{rank}(A\,A^-) = \mathrm{tr}(A\,A^-) = r.

A similar argument shows

rank(AA)=tr(AA)=r. \mathrm{rank}(A^-\,A) = \mathrm{tr}(A^-\,A) = r.

In particular:

  • If rank(A)=p\mathrm{rank}(A)=p (full column rank), then AA=IpA^-\,A = I_p.
  • If rank(A)=n\mathrm {rank}(A)=n (full row rank), then AA=InA\,A^- = I_n.

Property 1.2.5

For any n×pn \times p matrix AA,

A(AA)A  =  A,A(AA)  AA  =  A. A'(A' A)^- A' \;=\; A', \quad A\,(A' A)^-\;A' A \;=\; A.

(Here AA' denotes AA transposed.)

Sketch of the proof.

Show

Ax=0        AAx=0. A\,x = 0 \;\;\Longleftrightarrow\;\; A'A\,x = 0.

Show

Ax=Ay        AAx=AAy. A\,x = A\,y \;\;\Longleftrightarrow\;\; A'A\,x = A'A\,y.

From these, deduce

A(AA)A=AandA(AA)AA=A. A'(A'A)^-A' = A' \quad\text{and}\quad A\,(A'A)^-\,A'A = A.

A key step is “canceling” a factor with proper rank conditions. The result is

A(AA)AA=AandA(AA)A=A. A\,(A'A)^-A' A = A \quad\text{and}\quad A'(A'A)^-A' = A'.

(Additional Note on “Cancelation”)

ABC=0    and    BC=0rank(AB)=rank(B). A\,B\,C = 0 \;\;\text{and}\;\; B\,C = 0 \quad\Longleftrightarrow\quad \mathrm{rank}(A\,B) = \mathrm{rank}(B). CAB=0    and    CA=0rank(AB)=rank(A). C\,A\,B = 0 \;\;\text{and}\;\; C\,A = 0 \quad\Longleftrightarrow\quad \mathrm{rank}(A\,B) = \mathrm{rank}(A).

Property 1.2.6

For any matrix AA, the matrix

A(AA)A A\,(A'A)^-\,A'

is a projection matrix (i.e., it is idempotent) and does not depend on the particular choice of the minus inverse AAA'A^-.

1. Independence of the choice

If (AA)11and(AA)21(A'A)^{-1}_1 \quad \text{and} \quad (A'A)^{-1}_2 are two different minus inverses of AAA'A, one can show

AA(AA)1AA  =  AA  =  AA(AA)2AA, A' A \,(A'A)^-_1\, A' A \;=\; A' A \;=\; A' A \,(A'A)^-_2\, A' A,

which implies

A(AA)1A  =  A(AA)2A. A\,(A'A)^-_1\,A' \;=\; A\,(A'A)^-_2\,A'.

Hence the product (A,(AA)1,A)(A, (A'A)^{-1}, A') is indeed independent of which minus inverse is chosen.

2. Symmetry

Since AAA'A is symmetric, it can be diagonalized by an orthogonal matrix. A suitable choice of (AA)1(A'A)^{-1} can also be made symmetric, implying that

A(AA)A A\,(A'A)^-\,A'

is itself symmetric.

3. Idempotence

One checks

(A(AA)A)2  =  A(AA)AAcommon factor(AA)A  =  A(AA)A. \bigl(A\,(A'A)^-\,A'\bigr)^2 \;=\; A\,(A'A)^-\, \underbrace{A'\,A}_{\text{common factor}}\, (A'A)^-\, A' \;=\; A\,(A'A)^-\,A'.

Hence

A(AA)A A\,(A'A)^-\,A'

is idempotent; in other words, it is a projection matrix.

Property 1.2.7

For any arbitrary matrix AA, the matrix

A(AA)A A (A'A)^{-} A'

is the projection matrix onto the column space R(A)R(A). Denote it by

PA    A(AA)A. P_A \;\equiv\; A (A'A)^{-} A'.

  1. For every xR(A)x \in R(A), we have

PAx  =  x. P_A x \;=\; x.

  1. For every uRnu \in \mathbb{R}^n, we have

PAu    R(A). P_A u \;\in\; R(A).

Proof.

  1. For every xR(A),x \in R(A), there exists some yRpy \in \mathbb{R}^p such that x=Ayx = A y. Then

PAx  =  A(AA)AAy  =  Ay  =  x. P_A x \;=\; A (A'A)^{-} A' \,A y \;=\; A y \;=\; x.

  1. For every uRnu \in \mathbb{R}^n,

PAu  =  A(AA)AAu  =  A((AA)AAu)    R(A). P_A u \;=\; A (A'A)^{-} A' \,A u \;=\; A\bigl((A'A)^{-} A' \,A u\bigr) \;\in\; R(A).

Therefore,

PA  =  A(AA)A P_A \;=\; A (A'A)^{-} A'

is indeed the projection matrix onto R(A)R(A).